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Singularities of plane curves which occur as singular 
sections of the bifurcation sets of the cuspoid catastrophes 

F J Wright 
Institut fur Informationsverarbeitung, Universitat Tubingen, Kostlinstrasse 6 ,  D-7400 
Tubingen 1, West Germanyt 

Received 4 September 1980, in final form 9 February 1981 

Abstract. Plane curves specified parametrically by y = sp,  x = s q ,  p and q integra1,p *q > 0 
are either graphs of monomials, or have a singularity at the origin which can be one of four 
types: cusp, bend, kink or end. These types are classified by ( p ,  q) = (even, odd) or by a 
winding number index. Singular sections of the cuspoid bifurcation sets, in which all but two 
of the control variables are set to zero, are either cusps, bends or one of four more-singular 
curves derived from the above by the addition of the tangent at the origin. An explicit 
classification is given of the curve types arising in codimension up to 7. Only in such sections 
can the equations of the bifurcation sets generally be written explicitly. 

I. Introduction 

Geometrical singularities of curves, surfaces etc take on new significance in catastrophe 
theory (Thom 1975, Zeeman 1977, Poston and Stewart 1978), in which they are the 
physical manifestations of multiple degeneracy in the state of a system. 

A state of a complicated system, such as a biological system, may require a vast 
number of state variables si to specify it. However, the system usually evolves in a space 
of small dimension, such as the space-time of our own existence. The variables in this 
evolution space, together with any parameters by which we can control the system, are 
called control variables ci. In catastrophe theory the set of points c in the control space 
C, at which the state of the system is degenerate, is called the bifurcation set 93-it 
divides the control space into non-degenerate regions. In the neighbourhood of a 
simple degeneracy, where just two states coalesce, 93 is smooth. In the neighbourhood 
of a multiple degeneracy 93 displays a geometrical singularity, whose type is charac- 
teristic of the form of degeneracy which produces it: for example, a triple degeneracy 
produces a cusp in B. Much interest focuses upon the bifurcation set, because it 
represents an encapsulation in a low-dimension space of the essential geometry of the 
catastrophe (i.e. the degeneracy) which may actually occur in very high dimension. 

A striking and familiar instance of this is optical caustics, perhaps most familiar as 
the rainbow, but also often seen as the bright focal lines under rippling water in a bath or 
swimming pool, or on the surface of a cup of tea (Berry and Upstill 1980 and references 
therein). The caustic is the bifurcation set, which is the physical manifestation of the 
configuration of the rays, or the shape of the wavefronts, themselves essentially 
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1588 F J Wright 

invisible. A cusped caustic arises from the focusing of three rays, whereas on smooth 
parts of the caustic only two rays focus. Virtual caustics (defined as in the footnote on 
p 164 of Born and Wolf 1975) are also extremely common, although not so obvious. 
For example, the image one sees looking through a perfect pane of glass is a very small 
segment of a cusped virtual caustic (Wright 1981). 

In elementary catastrophe theory the states s (ES, the state space) of the system are 
given as the stationary points of some function +(s; c ) .  When the parameters c lie on 
the bifurcation set, two or more stationary points coalesce. The basis of catastrophe 
theory is Thom's theorem, which says that under suitable restrictions on the dimensions 
of S and C, the behaviour of a typical 4 is equivalent to that of one of a small finite set of 
normal forms. 

The normal forms are distinguished, among other things, by the minimal dimension 
of S (corank) and of C (codimension), in which they can occur. In this paper we study 
the family of normal forms of corank 1, which is called the cuspoids. For these, the 
equivalence of 4 referred to above is by smooth diffeomorphism, i.e. infinitely 
differentiable change of coordinates possessing an infinitely differentiable inverse. If 
dim S > 1 other normal forms may also occur, and if dim C > 5 it may be necessary to 
weaken the equivalence to homeomorphism for catastrophes other than cuspoids in 
order that the set of equivalence classes remain finite, i.e. it may be necessary to drop 
the differentiability requirement. 

One of the most powerful aspects of Thom's theorem is that for a given dim C, 
increasing dim S above some threshold does not increase the number of normal forms 
to which 4 may be equivalent. Hence the cuspoids are relevant to systems with very 
large numbers of state variables. 

The fact that (p is embedded in an equivalence class means that a particular C$ is 
structurally stable under small perturbations. The cuspoid of codimension K also 
occurs as a stable singularity of a general (non-gradient) map from RK to RK. This is not 
true for catastrophes of higher corank, although these may also occur as stable 
singularities of maps from R" to R" where n >K. For a clear explanation of this see 
Thorndike et a1 (1978) and Nye and Thorndike (1980). (For the mathematics see 
Golubitsky and Guillemin 1973). 

There is clearly a problem of representation for point sets of high dimension. The 
best one can do is to accurately plot two-dimensional sections, or sketch three- 
dimensional sections. Generally such sections do not have simple equations, and their 
accurate plotting requires some numerical technique plus computer graphics. Wood- 
cock and Poston (1974) have plotted a large number of such sections, in which the 
bifurcation set is represented as the envelope of a family of straight lines (for cuspoids) 
or curves (for umbilics). Upstill (Berry and Upstill 1980, Upstill 1979a, b) plots 
bifurcation sets of corank-two catastrophes by mapping, via Vs+ = 0, the zero contour 
of the Hessian determinant of +(s; c)  with respect to s into C. 

The sections of bifurcation sets which are usually plotted are the coordinate sections 
(despite the non-typical symmetry which they often show, as remarked upon by Nye 
and Thorndike (1980, p 6), specified by setting all but two of the control variables equal 
to constants. These sections show how the catastrophe organises catastrophes of lower 
codimension, but the essential geometry of a catastrophe only appears in the singular 
sections, i.e. those through c = 0. 

The main motivation for this paper stems from the following. The sequence of 
cuspoid normal forms takes a very simple general form, which facilitates a systematic 
and exhaustive analytical study of properties of the cuspoids. The easiest way to find 
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which catastrophe one is dealing with is often via the bifurcation set, especially if 4 is 
complicated (e.g. Wright 1981). One can always write the equations of bifurcation sets 
in parametric form, with the state variables as parameters, but generally it is impossible 
(or too complicated to be useful) to write the equations explicitly; this is possible only in 
singular plane coordinate sections. 

We shall find that in these special singular sections precisely six distinct types of 
curve occur. In the next two sections of the paper we discuss these curve types, and in 
6 4 we classify the singular coordinate sections of the cuspoid bifurcation sets. Struc- 
tures emerge which are not obvious from previous studies. In 69 5 and 6 we discuss the 
classification and some possible applications. 

2. Singularities of a class of plane curves 

The class of plane curves that we need to consider is those expressed parametrically as 

y = s p  x = s q  ( 1 )  
for all real s, where p > 0 and q > 0. Imposing, if necessary, the condition that x and y 
be positive (see below), we may eliminate s to give the explicit equation 

y = x a  where a =p/q  > O  (2) 
and all real roots are to be taken. Any singularity of (1)  can only occur at the origin. By 
singularity we mean, of course, a point of non-analyticity of y (x), which will be a branch 
point of (2) in the complex x plane (or worse!). A point is singular if one or more 
derivatives fail to exist there, and this occurs here in two ways. 

First let us consider equation ( 2 ) ,  and ignore the fact that it was derived from (1). We 
exclude the trivial straight lines resulting from p = q, so without loss of generality we 
may take p >q, hence a > 1 (otherwise swap x and y ) .  Then (2) is once differentiable 
and has zero slope at the origin, since 

dy/dx = a x n - ’  and a - 1 > 0 .  

However, 

d“y/dx”=a(a- l ) (a-2)  . .  . (a -n+1)xC(-”  

and if a - n < 0 this diverges as x + 0, unless one of the factors in parentheses is zero. 
Hence if a = p / q  is non-integral, all nth derivatives with n >a diverge, giving a 
singularity (a branch point) at the origin. 

The second form of singularity is more subtle: the curve actually stops at the origin, 
and only exists in the first quadrant. We shall call this an end singularity. This will occur 
for all irrational a,  because we are restricting ourselves to real variables-an irrational 
root of a negative real number cannot be real. Thus there is only one type of singularity 
for irrational a,  the irrational end singularity. It will look much like the rational end 
singularities shown in figure l ( d ) .  Such non-algebraic singularities cannot arise from 
catastrophe theory, and from now on we consider only rational a = p / q ,  with p >q,  
resulting from p and q which are natural numbers. 

The rational end singularity is not implicit in equation (2): it results only from 
equation ( l ) ,  and is not necessarily a branch point of equation (2). It occurs when p and 
q are both even so that y a 0 and x 3 0, because then s a 0 ands s 0 generate exactly the 
same curve in (x, y):  the two branches of the curve have coalesced exposing an endpoint 
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at the origin. In all other cases the curve passes continuously through the origin, which 
is a singularity unless a = p / q  is integral. Hence the origin can be regular only if q is 
odd, since p and q both even produces an end singularity. 

The general form of the curve is determined by the ranges of values which x and y 
may take. We distinguish six cases, of which four are singular. These are set out in 
table 1. 

Table 1. Classification of the curve types. (The index is explained in 0 3.) 

Index p 4 y range x range CY = p / q  Name Symbol 

1 odd even all x 2 0 always fractional cusp CO: 
1 fractional 

even integer z even odd y 3 0  all [ bend BCY 
even monomial M a  

fractional kink Ka 
y s o  odd integer odd monomial M a  

4 end Ea 

0 odd odd 

even even y 3 0  x 3 0  all 1 - 

We specify a curve by a symbol made up of a letter indicating the curve type, plus the 
value of a.  We take CY in lowest form, since two curves of the same type with the same a ,  
but differentp andq, are the same. In fact, all types of curve except ends are completely 
specified by CY in lowest rational or integral form, and the letter symbols are merely an 
aid to clarity. But an end may have the same lowest form CY value as any other curve, so 
in this case some additional distinction is essential. For all types of curve except ends 
the ranges of x and y are implicit in equation (2) with lowest form (Y value. This is 
because these curves are algebraic, but the end is semi-algebraic being specified by the 
equality y = x a  plus the inequalities y 3 0 ,  x 2 0. These are the conditions, mentioned at 
the beginning of this section, which must be imposed when s is eliminated if p and q are 
both even. 

Figure 1 shows a selection of the curves described in table 1 for small values of p and 
q, including the non-singular quadratic and cubic monomials M2 and M3. The curves 
were accurately computer plotted from equation (l), and should make the reason for 
the choice of names clear (cusp is, of course, standard). 

3. The singularity types 

We have distinguished four equivalence classes of ‘rational singularities’. The members 
of each class, labelled by theirp, q values, clearly have the same form in some sense, but 
in just what sense is quite subtle (see also Berry 1980, § 3.2). Simple topological 
equivalence, or homeomorphism, only distinguishes the end singularity-the others are 
all homeomorphic. If we try to strengthen the equivalence by making it infinitely 
differentiable then none of the curves are equivalent. Homeomorphism is too weak and 
diffeomorphism is too strong: we need something in-between. Of course, we have the 
( p ,  q )  = (even, odd) classification, but this depends on a particular coordinate system. 
We would like to have a coordinate-independent classification. 

One possibility is an index or winding-number classification derived from the 
rotation of the tangent as the curve is traversed. (For references to winding-number 
classifications of some completely different singularities see e.g. Berry 1980, 00 2.1, 
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Figure 1. Some typical curves: (a) cusps, ( b )  bends and quadratic, ( c )  kinks and cubic, ( d )  
ends. 

3.3.) Label points along the curve by a parameter s, such as arc length, which increases 
monotonically with distance along the curve from -a as x or y + -CO, through 0 at the 
origin, to +a as x and y -+ +CO. Let 8 (s) be the angle from (say) the x axis in the positive 
direction (increasing x )  to the tangent in the positive direction (increasing s). The slope 
of every curve tends to zero at the origin and infinity as x and y tend to fa, hence 
lO(O)l= 0, and lO(*m)l= &T. Let A 8  be the total change in 8 along the curve. Then we 
define the index to be I = 1A8/2.rrl, where the modulus sign makes I independent of the 
direction of traversing the curve. From figure 1, every curve has 8(0+) = 0 and 
@(+a)=&r. HenceE hasAO=&randI=:. K , B  a n d M  have8(0-)=0,soO(s) 
passes continuously through 0 at s = 0. K and M(odd) have 8(--co) = +&r, so A 8  = 
2.rr -&r and I = 0. B and M(even) have 

The cusp is a little tricky. 8(-a) = +$.rr but 8(0-) = n, so 8(s) is discontinuous at 
the origin. Since angles are only defined modulo 27r, we have an ambiguity whether to 
add *T as s passes through 0. Let us insist that e(s) vary monotonically through a 
discontinuity, so that we add .rr as s increases. Then A 8  = &r + T + k.rr and I = 1. This is 
equivalent to regarding a cusp as the limit as a loop shrinks to a point. 

The index classification is shown in the first column of table 1. Note that the two 
cases in which the curve crosses its tangent have integral index, otherwise the index is 
fractional. The index classification is coordinate independent, but is a global 
classification and locally cannot be applied exactly. The ( p ,  q )  classification requires the 
particular choice of coordinates used in Q 2, but applies locally (in keeping with the spirit 
of catastrophe theory). 

We shall show that, in the cuspoid bifurcation sets, cusps and bends occur alone, and 
all the types of curve we have been considering occur in a closely related form involving 
a more complicated singularity. This is produced by adding the tangent at the origin, i.e. 

1 = -&r, so A 6  =:T +fn and I =f. 
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each new curve is the union of the old one and the x axis. Every such curve-plus- 
tangent has a singularity at the origin, even when the basic curve is a perfectly regular 
monomial. Every one of the new curves contains one or two copies of a special type of 
cusp, in which one limb is a straight line, and these special cusps are not diffeomorphic to 
any GY. 

Once the tangent is added, there is little point in distinguishing bends and kinks from 
monomials, since the tangent makes them all singular. Hence we have eight singular 
curves: C ,  CT, B, BT, K, KT, E, ET, where T stands for the added tangent, plus the 
regular monomials. C, CT, B, BT, KT, ET occur in singular sections of cuspoid 
bifurcation sets. 

4. Singular coordinate sections of the cuspoid bifurcation sets 

The cuspoid catastrophe of codimension K,  A,,, in Amol'd's (1975) notation, is 
generated by the normal form 

(using essentially the notation of Berry and Upstill 1980, Berry and Wright 1980). Its 
bifurcation set 93 is the solution in the control space C of 

K 
-= 2 (K + l ) s K  + c cn(n - l)s"- '= 0 

n=2 

where all variables are real. Equation (3a)  specifies the states of the system as 
stationary points of 4 (s ; c )  with respect to s, and equation (3b) is the condition that at 
least one state be degenerate, i.e. that (3a)  has a multiple root. 

As remarked earlier, it is not generally possible to eliminates from these equations. 
However, by making use of their linearity in the c,, one can easily solve for the 
coordinates of the curve produced by any plane section, expressed parametrically in 
terms of s. Only in the singular coordinate sections, for which all but two of the c,, say ci 
and cj,  are set equal to zero, can the equation of the curve be written explicitly. We call 
this a singular ( i , j )  section, where without loss of generality we take i > j ,  hence 
K si > j  2 1. Then equations (3) become 

sK+' + c i s i - l  + c j s j - l  = 0 

(K + 1)sK +ci( i  - 1)si-'+cj(j - 1)sjW2 = 0. 

(4a 1 
(4b 1 

We can derive one generally valid solution of these equations by solving for ci and cj, 
giving 

Let us define p =K + 2 - j ,  q =IC +2-i .  Then K si > j  5 1 implies that 

2 < p s K + 1  2 G q < K + l  and P ' 4 .  (6)  



Singular sections of cuspoid bifurcation sets 1593 

Equations ( 5 )  become 

C l ( P  - 4 )  = -ps4 c, ( P  - 4 1 = 4sp 

and defining x - - [ ( p  -q) /p]c, ,  y - [ ( p  -q)/q]c,, where the quantities in parentheses 
are always positive, we have precisely equations (1). 

There is a second set of solutions of equations (4), which are easily overlooked, for 
which s = 0. They lead to the tangent lines referred to earlier, and to more degenerate 
‘tangent planes’. We have to consider three cases. Consider first the case j = 1 (hence 
i > l ) ,  when equations (4) become: 

SK+l+C,s~-l+C1=O (7a 1 
(K + 1)sK +c,(i - I ) S ’ - ~  = 0. (7b 1 

s = 0 satisfies equation (7a)  if c1  = 0. If i = 2, the only solution of (7b)  is then c2  = 0, as 
already given by (5) .  But if i > 2, s = 0 satisfies (7b)  for all c,. Hence forj = 1, i > 2 there 
is a second solution c1 = 0 for all c,. 

Consider now j = 2 (hence i > 2): 

SKi1+C,s~-1+C2S = o  @a 1 
(K + l)sK +c,(i - l)s’-2+c2 = 0. (8b)  

Now equation (8a) has a root at s = 0 for all c, and c2,  which is simple if c2 # 0. If c2 = 0, 
s = 0 also satisfies (8b)  for all c,, because s = 0 is then a multiple root of (8a). Hence for 
j = 2, i > 2 there is a second solution c2  = 0 for all c,. 

Finally consider j 2 3 (hence i > 3): 

s i - l ( s K  - j+z  + cisi -i +Ci) = 0 

s I - 2 [ ( ~  + 1 ) S K - j + 2  - tc i ( i - j )s i - ’+cj( j - l )]=O. 

s = 0 is a solution of these equations for all c, and c,, because of the factors in front of the 
brackets, i.e. s = 0 is a ( j  - 1)-fold root of (9a) .  This means that the whole (i, j )  plane is 
part of W. The equations also have the solution s = 0, c, = 0 (as for j = 2), giving a 
tangent line on which the degeneracy at s = 0 increases further. 

In Amol’d’s notation catastrophes in a particular family, such as the cuspoids, are 
labelled by the maximum number of stationary points which coalesce. An AI point is a 
non-degenerate (Morse) stationary point, an A2 point is a fold catastrophe point at 
which two stationary points coalesce, etc. Thus Al points do not contribute to 9, but 
any A,, points with n > 1 do. Using this notation we can summarise the singular 
coordinate sections of the cuspoid catastrophes as follows. 

For all i and j ,  almost all points (c,, c,) give rise to one or more non-degenerate AI 
points at s # 0. The roots of equation (9a)  at s f 0 can only be single or double. Hence, 
at points satisfying equation (5 ) ,  other than the origin, pairs of Al points coalesce into 
Az points at s f 0, so equation (5 )  gives a branch of 93 which is a fold line, or more than 
one fold (at different s) superposed in the ( i ,  j )  plane. 

For all i and j ,  the c, axis (c, = 0), apart from the origin, is a line of A,-1 points at 
s = 0. For i 2 3 these are degenerate, producing the tangent line which forms a second 
branch of W. For j = 2 almost all points also give AI points at s = 0, but these are 
non-degenerate and so do not contribute to W. 

For j 2 3 and all i (>j)  almost all points also give A,-1 points at s = 0. These are 
degenerate, so the whole ( i ,  j )  plane is part of W : it is a two-dimensional analogue of a 
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tangent line. The points only unfold when the control parameters are moved out 
of the (i,j) plane, so they do not produce any bifurcation within the plane. 

At the origin, for all i and j ,  these different branches and planes of 93 merge to give 
the main singularity, an AKtl point at s = 0. (The additional roots required result from 
the coalescence of complex conjugate pairs, which we have not considered.) 

We are at last in a position to classify the singular coordinate sections of the cuspoid 
bifurcation sets. We classify them by curve type and codimension in table 2, indicating 
for each catastrophe which (i, j )  section displays a particular curve type. If the i value is 
underlined it means that the ci axis forms part of 9, i.e. this section is of curve-plus- 
tangent type. If the whole symbol in parentheses is also underlined it means that the 
whole (i, j )  plane is part of 9. The number of different coordinate sections occurring in 
codimension K is 4K ( K  - l), which increases rapidly with K. Therefore table 2 stops 
arbitrarily at codimension 7, giving 21 sections. 

The sections displaying curves of type (p, q )  are derived frorn the equations 

i = K + 2 - q  j = K  +2-p. 

Note that if we had chosen to number the control variables in the opposite sense, the 
(i, j )  values in table 2 would have become almost trivial, but then the rule for including 
tangent lines and planes would have become more complicated, giving no net 
simplification. Note also that c,, the first numbered in the pair (i, j ) ,  d w a y s  corresponds 
to -x, and cJ to +y.  

As an illustration we consider the butterfly catastrophe A5, which is the first to 
exhibit a plane of bifurcation points, the (4,3) plane. The six singular sections are 
plotted in figures 2(a)- (f). They may be compared with the singular sections of the 
complete unfoldings of the butterfly shown in figures 8(a), (b) ,  (d ) ,  (c), ( e ) ,  (f) 
respectively of Nye and Thorndike (1980). Our figures 2(a) and 2(d)  may also be 
compared with the singular sections of figures 8 ( a )  and 9(a) of Woodcock and Poston 
(1974). They are identical except that neither of the other pairs of authors shows the 
tangent line in the (3,2) section, our figure 2(d), nor mentions the tangent plane in the 
(4,3) section. 

In figure 2 we show the type of catastrophe occurring on each branch of the 
bifurcation set, and whether or not it occurs at s = 0. These figures are self-consistent, 
in that any particular axis always displays the same catastrophe points, irrespective of 
which plane it appears in. This suggests that our inclusion of the tangent line in the (3,2) 
section is correct. 

5. Discussion of the classification 

We have classified the singular plane coordinate sections of the whole sequence of 
cuspoid bifurcation sets, and displayed the beginning of the classification in table 2. 
These sections display one of eight types of singularity, which are equivalent in a weaker 
sense than the equivalence up to diffeomorphism used to classify the cuspoids them- 
selves. 

In all but (2, 1) sections the bifurcation set 523 is garnished with a tangent line. In all 
(i, j )  sections with j 2 3 the whole (i, j )  plane is part of 93, and the curves which we are 
classifying are curves of additional degeneracy. Only cusps and bends ever appear 
alone, because only cusps and bends can occur in (2, 1) sections. We see this as follows. 
Since p = K 1 2 -  j ,  q = K + 2-i, then for i = 2, j = 1 we have p = K + 1, q = K. If K is 
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Figure 2. The six singular (i. j )  sections of the butterfly: ( a )  (2, 1)=C5/4, ( b )  (3, I ) =  
K5/3T, (c) (4, 1) = C5/2T, (d) (3, 2) = B4/3T, ( e )  (4,2) = E2T, (f)  (4, 3) = C3/2T; the 
whole plane is also part of the bifurcation set. On the branches of the bifurcation set, the 
catastrophe type (and whether the degeneracy occurs at s = 0) is indicated. 

ifl:c3Izi : , . , . . . 

even then ( p ,  q )  = (odd, even), which from table 1 gives a cusp, whereas if K is odd then 
(y ,  q )  = (even, odd), which gives a bend or even monomial. A monomial requiresplq to 
be integral, where p / q  = ( K  + 1)/K = 1 + 1/K, which is not possible since we are only 
considering K > 1. Hence isolated monomials, which would not be singular, cannot 
occur, and neither can isolated kinks or ends: a caustic cannot come to an end as a result 
of focusing alone! 

We look now, in codimension order, at some other specific results of this analysis, 
and indicate connections and comparisons with other work. The tangent lines first 
appear in two sections of the swallowtail. In the (3,2) section, which shows the first 
occurrence of the CT singularity, the tangent line is due to the (3,2) plane being tangent 
to the bifurcation set, whereas in the (3, 1) section, which shows the first occurrence of 
the ET singularity, it is due to the bifurcation set intersecting the plane. This difference 
naturally has immense effect on the unfolding of these sections. As mentioned above, 
the tangent lines are not apparent in the computer-graphical studies of bifurcation sets 
by Woodcock and Poston (19’74) (although these authors are aware of the deficiency- 
see their remark about non-generic slices on p 8). However, the tangent lines are 
essential to an understanding of the unfoldings. For example, if the singular (3, 2) 
section of the butterfly is unfolded along the c1 axis, it unfolds into a cusp and a fold 
(Woodcock and Poston 1974, p 23). It is obvious how a bend-plus-tangent can unfold 
in this way, but not at all clear how a bend on its own could (probably it could not!). A 
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similar example occurs for the singular (3,2) section of A6, this time involving a 
cusp-plus-tangent (Woodcock and Poston 1974, p 38). 

The E branch of the ET  singularity in the (3, 1) section of the swallowtail is produced 
by a line of self-intersection of the bifurcation set, i.e. it is two folds superposed. The 
continuation, resulting from removing the inequalities, of this semi-algebraic curve is 
called a complex whisker (Poston and Stewart 1976, p 130). On it, complex stationary 
points coalesce in conjugate pairs. Surrounding a physical swallowtail caustic is a 
diffraction pattern, the swallowtail diffraction catastrophe (Berry and Upstill 1980). 
Branching off from the complex whisker are parts of the Stokes and anti-Stokes sets 
(Wright 1977, 1980) of the diffraction catastrophe, which play an important role in 
determining the wavefront dislocation structure (Nye and Berry 1974, Wright 1979, 
Berry 1980). 

The B singularity occurs first in the (2, 1) section of the swallowtail which is shown 
unfolded along the c3 axis on p 18 of Woodcock and Poston (1974). It is important to 
remember that the slope 8 (s) varies continuously through a bend singularity-only the 
higher derivatives are singular. By contrast, the slope is discontinuous at a corner 
singularity, such as is displayed by one of the singular sections of the hyperbolic umbilic. 
The corner singularity is not displayed by any cuspoid. 

BT and KT first appear in the (3,2) and (3, 1) sections, respectively, of the butterfly, 
as discussed above. 

We have analysed geometrical properties of the cuspoid normal forms. However, 
the normal forms are only convenient representatives of equivalence classes af 
functions, and it may appear that we have been analysing artifacts of our particular 
choice of normal forms. Globally this is true, but locally, sufficiently close to their main 
singularities, all the functions in the equivalence class ‘look the same’ (they are 
diffeomorphic) and can be expressed in the same coordinate system. So, for example, 
tangent lines will always pass (locally) straight through the main catastrophe point, and 
can never themselves acquire any kind of singularity. 

6. Applications 

For high-codimension catastrophes, the biggest problem in understanding their 
geometry is lack of space to accommodate the myriad sections one would like to plot. 
The set of singular coordinate sections constitutes a simple but characteristic skeleton. 
Although non-generic, they provide useful anchors to tie down the full K-dimensional 
geometry of a bifurcation set. Consideration of how these singular sections could 
unfold gives clues to the local structure of the bifurcation set, which could be confirmed 
by a perturbation analysis. The analytical study presented here is complementary to 
more general numerical studies, since such methods appear generally to have difficulty 
picking up tangent lines (Upstill, private communication). 

One way in which singular sections can occur physically is as badly resolved nearby 
generic Sections, for example, in optical caustics. Berry and Nye (1977) discuss a caustic 
triple junction, which turns out (Upstill 1979b) to be organised by the corank 2 
catastrophe OX9, so that the resolution of the ‘triple junction’ involves an unfolding of 
X9. Berry and Nye’s photographs, especially figures 5(d) ,  ( e )  and ( f ) ,  show features 

which locally look like singular (3, 1) sections of swallowtails. Of course, they cannot 
really be exactly singular (3, 1) sections-they will be generic sections near this 
section-but in practice the blurring due to diffraction makes all such nearby sections 

0 
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look much the same. By recognising this fact, Berry and Nye were able to draw suitably 
generic explanatory sketches. In fact, the singular (3, 1) section of the swallowtail on its 
own gives a triple junction with a rather special geometry! 

Singular sections can also arise physically as a result of constraints on a system such 
as symmetries. If an optical system produces a caustic which is a singular section of a 
catastrophe, then a generic perturbation will change the topology (diff eotype) of the 
caustic. Experience suggests that the caustic is likely to be a singular coordinate section, 
especially if it is a result of symmetry. By recognising this section, and using table 2,  one 
can predict how the caustic can unfold when the constraint is removed (assuming the 
catastrophe responsible to be a cuspoid!). For example, an isolated C5/4 cusp can only 
arise from a (2, 1) section of a butterfly (a fact made use of by Wright (1981) in the 
analysis of a virtual caustic). Most sections, however, may arise from more than one 
catastrophe. This approach was fruitfully applied to quantum scattering by Berry 
(1975) to predict a hyperbolic umbilic unfolding from its singular section. Berry then 
confirmed this both analytically and in an optical analogue experiment. 

A particular example of a constraint is if the generating function of a cuspoid must 
be odd in s, as might be required to make the associated diffraction catastrophe real. 
This constraint is satisfied by cuspoids with odd codimension in hypersections in which 
all even control variables cZm are zero. Such real hypersections of diffraction catastro- 
phes can occur as ‘Wigner catastrophes’-Wigner functions in the phase space of a 
semiclassical system-which project into normal diffraction catastrophes in the quan- 
tum wavefunctions (Berry 1977a, Berry and Wright 1980). Hence any of the sections 
we have considered, for which K ,  i andj are all odd, could occur as sections of a ‘Wigner 
caustic’, part of which forms the classical phase-space manifold. The simplest example, 
the (3, 1) section of the swallowtail, is discussed in detail in the above references. 
However, for higher catastrophes Wigner caustics can be more general than our 
singular coordinate sections. 

It should be possible to extend this analysis to the umbilics, in fact, the more 
complicated the catastrophe the more useful this analysis is, since it is more difficult to 
do anything else! There are sequences of umbilics in Amol’d’s (1975) classification (see 
also Berry 1977b), the simplest of which are the conic umbilics Di ( j  24) ,  whose 
generating functions take on a general form as do the cuspoids. But there are also a lot 
of umbilics which would have to be treated individually! 
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